RF Cafe Software

RF Cascade Worbook
 RF Cascade Workbook 2005 - RF Cafe
Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio
Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Manufacturers & Services Consultants Engineer Jobs Twitter LinkedIn Advertise on RF Cafe! Engineering Books Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar Day in History RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Bookstore Calculators Education Engineering Organizations Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings Advertisers Websites RF Cafe Archives Test Notes Slide Rules RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger

Carpe Diem!
(Seize the Day!)

5th MOB:
My USAF radar shop

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse riding website

The Carnot Cycle

An ideal cycle would be performed by a perfectly efficient heat engine—that is, all the heat would be converted to mechanical work. A 19th-century French scientist named Nicolas Carnot conceived a thermodynamic cycle that is the basic cycle of all heat engines. He showed that such an ideal engine cannot exist. Any heat engine must expend some fraction of its heat input as exhaust. The second law of thermodynamics places an upper limit on the efficiency of engines; that upper limit is less than 100 percent. The limiting case is now known as a Carnot cycle.

Carnot cycle diagram - RF Cafe

                                      The Carnot Cycle

(1) Isothermal expansion of gas in cylinder as heat is added from source. Piston moves from V1 to V2, doing work on the system.

Carnot cycle - isothermal expansion - RF Cafe     Isothermal expansion - RF Cafe

(2) Heat source is removed and isolated. Adiabatic expansion continues until volume V3 is reached, performing additional work, at temperature T2.

Carnot cycle - adiabatic expansion - RF Cafe    Adiabatic expansion - RF Cafe

(4) Heat source is removed and isolated. Adiabatic compression continues until volume V4 is reached, performing additional work, at temperature T2.

Carnot cycle - adibatic compression - RF Cafe    Adiabatic compression - RF Cafe

(3) Isothermal compression of gas in cylinder as work is done by the system on the piston. Heat is be transferred to T2.

Carnot cycle - isothermal compression - RF Cafe    Isothermal compression - RF Cafe

Isothermal: Process in which no temperature change occurs in a closed system. Adiabatic: Process in which no heat is transferred into or out of a closed system.

Try Using SEARCH to Find What You Need.  >10,000 Pages Indexed on RF Cafe !

Copyright 1996 - 2016
Webmaster:  Kirt Blattenberger, BSEE - KB3UON
Family Websites:  Airplanes and Rockets | Equine Kingdom

All trademarks, copyrights, patents, and other rights of ownership to images
and text used on the RF Cafe website are hereby acknowledged.