RF Cafe Software

RF Cascade Workbook 2005 - RF Cafe
RF Cascade Workbook

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio

About RF Cafe

Kirt Blattenberger - RF Cafe WebmasterCopyright
1996 - 2016
Webmaster:
Kirt Blattenberger,
 BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:
 AirplanesAndRockets.com

Try Using SEARCH
to Find What You Need. 
There are 1,000s of Pages Indexed on RF Cafe !

Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Calculators Education Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings RF Cafe Archives Test Notes RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

Arrhenius Lifetime Acceleration of an Integrated Circuit

The Arrhenius equation predicts failure acceleration rate due to temperature increase. Although originally developed to describe chemical reactions due to temperature, it applies equally well to electronic assembly failure rates. The Arrhenius activation energy, ΔH, is all that is needed to calculate temperature-related acceleration.

Swedish chemist Svante Arrhenius provided a physical justification and interpretation for his observation back in 1899. His equation can be used to model the temperature-variance of diffusion coefficients, population of crystal vacancies, creep rates, and many other thermally-induced processes/reactions. A useful generalization borne out by the Arrhenius equation is that for many common chemical reactions at room temperature, the reaction rate doubles for every 10 °C increase in temperature.



Arrhenius Model for Integrated Circuits
 
F = x1
x2
= eα {Lifetime Acceleration Factor}
Where: x1 = Failure rate at junction temperature T1
x2 = Failure rate at junction temperature T2
T = Junction temperature in degrees K
ΔH = Thermal activation energy in eV
k = Boltzmann's constant
Arrhenius Model for Integrated Circuits