Custom Search
Over 10000 Pages Indexed
Your Host
Click here to read about RF CafeKirt
Blattenberger

... single-
handedly
redefining
what an
engineering website
should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5CCG (5th MOB):
My USAF radar shop

Hobby & Fun

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse
riding business website -
lots of info

•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

Job Board

About RF Cafe©

RF Cafe E-Mail

VSWR Reduction by Matched Attenuator

Res-Net Microwave


By inserting a matched (nominal system impedance) attenuator in front of a mismatched load impedance, the mismatch "seen" at the input of the attenuator is improved by an amount equal to twice the value of attenuator. The explanation is simple.

VSWR Reduction By Matched Attenuator - RF Cafe
Here is a JavaScript calculator for VSWR / Return Loss / Reflection Coefficient / Mismatch Error / Improvement

Return loss is determined by the portion of the input signal that is reflected at the load (due to impedance mismatch) and returned to the source. A perfect load impedance (complex conjugate of the source impedance) would absorb 100% of the incident signal and therefore reflect 0% of it back to the source (return loss of ∞ dB).

For the sake of illustration, assume that the load is an open (or short) circuit, where 0% of the incident signal is absorbed by the load and 100% is reflected back to the source. The reflected signal would therefore have a return loss of 0 dB. Insert a 3 dB  attenuator in front of the load. Now the incident signal is referenced to the input of the attenuator.

As signal at the input of the attenuator will experience a 3 dB reduction in power by the time it reaches the load. That 3 dB less power will be 100% reflected by the load and experience another 3 dB reduction in power by the time is returns back to the input, for a total loss of 6 dB. The same principle applies for a load anywhere(§) between zero and infinite load impedance (short and open circuits, respectively).

Calculate the improved VSWR as follows. Note that by my convention the loss value is returned as a positive number, since the word "loss" implies the negative. If it were to be termed "return gain," then the result would be reported as a negative number. Equally qualified experts will disagree on whether return loss should take on a negative value or a positive value; the important thing is to keep the sign correct in your calculations; i.e., if you use a positive value, then subtract it, and vice versa.
  • Convert the load VSWR to load return loss per the following equation:

                          RLLOAD=20*log dB
  • Add twice the attenuation value to RLLOAD: RLNEW=RLOAD + 2*ATTEN dB (where RL=Return Loss)
  • Convert back to VSWR per the following equation: VSWR=

Of course, the method can be reversed to predict the attenuator required to improve a load VSWR by a predetermined amount. To do so, calculate the desired return loss and subtract the known load return loss. Divide the answer by two to get the attenuator value needed.

See the VSWR Calculator page.

§ Actually, the attenuator is only rated for its specified attenuation level when it is connected between two nominal impedances. Therefore, the attenuator will either have to be designed to closely match the two impedances at its input and output (source and load, respectively), or an adjustment will need to be made in the specified attenuation value to compensate for the mismatched load impedance.


A Disruptive Web Presence

Custom Search
Over 10,000 pages indexed! (none duped or pirated)

Read About RF Cafe
Webmaster: Kirt Blattenberger
    KB3UON

RF Cafe Software

RF Cascade Workbook
RF Cascade Workbook is a very extensive system cascaded component Excel workbook that includes the standard Gain, NF, IP2, IP3, Psat calculations, input & output VSWR, noise BW, min/max tolerance, DC power cauculations, graphing of all RF parameters, and has a graphical block diagram tool. An extensive User's Guide is also included. - Only $35.
RF system analysis including
frequency conversion & filters

RF & EE Symbols Word
RF Stencils for Visio

Product & Service Directory
Personally Selected Manufacturers
RF Cafe T-Shirts & Mugs

RF Cafe Software

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel