RF Cafe Software

RF Cascade Worbook
 RF Cascade Workbook 2005 - RF Cafe
Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio
Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Manufacturers & Services Consultants Engineer Jobs Twitter LinkedIn Advertise on RF Cafe! Engineering Books Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar Day in History RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Bookstore Calculators Education Engineering Organizations Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings Advertisers Websites RF Cafe Archives Test Notes Slide Rules RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger
BSEE
KB3UON
EIEIO

Carpe Diem!
(Seize the Day!)

5th MOB:
My USAF radar shop

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse riding website

Transmission Line Equations

Transmission lines take on many forms in order to accommodate particular applications. All rely on the same basic components - two or more conductors separated by a dielectric (insulator). The physical configuration and properties of all the components determines the characteristic impedance, distortion, transmission speed, and loss.

The following formulas are presented in a compact text format that can be copied and pasted into a spreadsheet or other application.

For the following equations, ε is the dielectric constant (ε = 1 for air)





Two Conductors in Parallel (Unbalanced)
Above Ground Plane


For D << d, h

Z0= (69/ε½) log10{(4h/d)[1+(2h/D)2]}

Parallel conductors above a ground plane - RF Cafe
Single Conductor Above Ground Plane
 

For d << h

Z0= (138/ε½) log10(4h/d)

Single conductor above a ground plane - RF Cafe
Two Conductors in Parallel (Balanced)
Above Ground Plane


For D << d, h1, h2

Z0= (276/ε½) log10{(2D/d)[1+(D/2h)2]}

Parallel conductors above a ground plane - RF Cafe
Two Conductors in Parallel (Balanced)
Different Heights Above Ground Plane


For D << d, h1, h2

Z0= (276/ε½)log10{(2D/d)[1+(D2/4h1h2)]}

Parallel conductors different heights above a ground plane - RF Cafe
Single Conductor Between
Parallel Ground Planes


For d/h << 0.75

Z0= (138/ε½) log10(4h/πd)

Single conductor between parallel ground planes - RF Cafe

Two Conductors in Parallel (Balanced)
Between Parallel Ground Planes


For d << D, h

Z0= (276/ε½) log10{[4h tanh(πD/2h)]/πd}

Two conductors between parallel ground planes - RF Cafe
Balanced Conductors Between
Parallel Ground Planes


For d << h

Z0= (276/ε½) log10(2h/πd)

Balanced conductors between parallel ground planes - RF Cafe

Two Conductors in Parallel (Balanced)
of Unequal Diameters





Z0= (60/ε½) cosh-1 (N)

N = ½[(4D2/d1d2) - (d1/d2) - (d2/d1)]

Parallel conductors - unequal diameters - RF Cafe
Balanced 4-Wire Array

For d << D1, D2

Z0= (138/ε½) log10{(2D2/d)[1+(D2/D1)2]}

Balanced 4-wire array - RF Cafe
Two Conductors
in Open Air


Z0= 276 log10(2D/d)

Two conductors in open air - RF Cafe
5-Wire Array

For d << D

Z0= (173/ε½) log10(D/0.933d)

5-wire array - RF Cafe
Single Conductor in
Square Conductive Enclosure


For d << D

Z0≈ [138 log10(ρ) +6.48-2.34A-0.48B-0.12C]/ε½

A = (1+0.405ρ-4)/(1-0.405ρ-4)

B = (1+0.163ρ-8)/(1-0.163ρ-8)

C = (1+0.067ρ-12)/(1-0.067ρ-12)

ρ= D/d

Single conductor in square conducting enclosure - RF Cafe

Air Coaxial Cable with
Dielectric Supporting Wedge


For d << D

Z0≈ [138 log10(D/d)]/[1+(ε-1)(θ/360)]½)

ε = wedge dielectric constant

θ= wedge angle in degrees

Air coaxial cable with dielectric supporting wedge - RF Cafe
Two Conductors Inside Shield
(sheath return)


For d << D, h

Z0= (69/ε½) log10[(ν/2σ2)(1-σ4)]

ν = h/d       σ = h/D

Twin conductors inside shield - RF Cafe

Balanced Shielded Line

For D>>d, h>>d

Z0= (276/ε½) log10{2ν[(1-σ2)/(1+σ2)]}

ν = h/d       σ = h/D

Balanced shielded line equation - RF Cafe
 
Two Conductors in Parallel (Unbalanced)
Inside Rectangular Enclosure


For d << D, h, w

                          ∞
Z0= (276/ε½) {log10[(4h tanh(πD/2h)/πd)- ∑ log10[(1+μm2)/(1-νm2)]}
                            m=1

μm=sinh(πD/2h)/cosh(mπw/2h)

νm=sinh(πD/2h)/sinh(mπw/2h)

Balanced 2-conductor line inside rectangular enclosure - RF Cafe


Equations appear in "Reference Data for Engineers," Sams Publishing 1993

Try Using SEARCH to Find What You Need.  >10,000 Pages Indexed on RF Cafe !

Copyright 1996 - 2016
Webmaster:  Kirt Blattenberger, BSEE - KB3UON
Family Websites:  Airplanes and Rockets | Equine Kingdom

All trademarks, copyrights, patents, and other rights of ownership to images
and text used on the RF Cafe website are hereby acknowledged.