Pulse Definition

Although in special circumstances the definition of pulse parameters might be changed to meet a certain need, the figure shown below represents the standard used by both the analog and digital engineering communities. A positive pulse is presented here, but everything applies equally for a negative pulse.

An ideal positive pulse is made up of a leading edge with a 0-second rise time, a fixed amplitude voltage, current or power level of some duration, and then a trailing edge with a 0-second fall time.

Π

Ideal Positive Pulse

A real-world positive pulse is usually far from ideal - sometimes intentionally. The illustration below points out some of the non-ideal aspects of pulses. Notice that the leading and trailing edges have rise and fall times, respectively, that are not equal to zero time. Zero is nice (but unattainable in the real world) when timing of pulses in a system of pulses is essential. Non-zero rise/fall times creates ambiguity in timing that can cause bit errors to occur. An instance of when you might want some slope in the edges is in the case of audio circuits where the high frequency content of a sharp edge can cause "chirp."

Another major non-ideal feature is overshoot and ringing. Both phenomena are cause by a circuit that is not critically damped. This situation is never useful, but can be tolerated if the level sampling is don at the center of the pulse, after the signal has settled down.

Finally, amplitude droop from the beginning to the end of the pulse can cause the level detection to disqualify the pulse if is is below the acceptable threshold when it is sampled. As with the other two characteristics, good circuit design can either eliminate, reduce, or simply tolerate any or all of the non-ideal features.

Pulse definition - overshoot & ringing - RF Cafe  

Positive Pulse Waveform