Custom Search
Over 10000 Pages Indexed

Your Host 
Kirt Blattenberger ... single handedly redefining what an engineering website should be.
5CCG (5th MOB): 
Hobby & Fun
Airplanes and Rockets: Equine
Kingdom: 
•−• ••−• −•−• •− ••−• •
RF Cafe Morse Code >Hear
It<


Job Board 

About RF Cafe© 

RF Cafe EMail 
See the online attenuator calculator here.
Fixed attenuators can be designed to have either equal or unequal impedances and to provide any amount of attenuation (theoretically) equal to or greater than the configuration's minimum attenuation  depending on the ratio of Z_{1}/Z_{2}. Attenuators with equal terminations have a minimum attenuation of 0 dB. Unequal terminations place a lower limit on the attenuation.
K = power in / power out, or in decibels = 10 * log (K) dB
, or in decibels
K_{MIN }= 10 * log (K_{min}) dB
Unbalanced Tee (T) Attenuator  Note: Only enter values in the yellow cells or risk overwriting formulas!
If Z_{1} = Z_{2}, then:

Balanced Tee (T) Attenuator  
Unbalanced Pi (p) Attenuator 
If Z_{1} = Z_{2}, then:

Balanced Pi (p) Attenuator  
An RF Cafe visitor wrote to say that he thought the above equations might be in error when unequal source and load termination resistances are used. The image below shows the mathematical steps that prove the equations are correct. It uses a source resistance of 50 ohms and a load resistance of 100 ohms, with an attenuation of 10 dB. Resistor values for both the "T" and ""Pi" attenuators were determined using the attenuator calculator on RF Cafe (which uses these equations).
A Disruptive Web Presence™
Custom Search
Over 10,000 pages indexed! (none duped or pirated)

Read About RF Cafe Webmaster: Kirt Blattenberger KB3UON 
RF Cafe Software
RF Cascade Workbook 
Product & Service Directory Personally Selected Manufacturers 

RF Cafe TShirts & Mugs  
RF Cafe SoftwareCalculator WorkbookRF Workbench Smith Chart™ for Visio Smith Chart™ for Excel 