RF Cafe Software

RF Cascade Workbook 2005 - RF Cafe
RF Cascade Workbook

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio

About RF Cafe

Kirt Blattenberger - RF Cafe WebmasterCopyright
1996 - 2016
Webmaster:
Kirt Blattenberger,
 BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:
 AirplanesAndRockets.com

Try Using SEARCH
to Find What You Need. 
There are 1,000s of Pages Indexed on RF Cafe !

Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Calculators Education Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings RF Cafe Archives Test Notes RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

Navy Electricity and Electronics Training Series (NEETS)
Module 11—Microwave Principles
Chapter 2:  Pages 2-61 through 2-66

Module 11—Microwave Principles
Pages i - ix, 1-1 to 1-10, 1-11 to 1-20, 1-21 to 1-30, 1-31 to 1-40, 1-41 to 1-50, 1-51 to 1-60, 1-61 to 1-68, 2-1 to 2-10, 2-11 to 2-20,
             21 to 2-30, 2-31 to 2-40, 2-41 to 2-50, 2-51 to 2-60, 2-61 to 2-66, 3-1 to 3-10, 3-11 to 3-20, AI-1 to AI-6, Index-1 to Index-2,
             Assignment 1 - 1-8, Assignment 2 - 9-16

 

 

TWT


 
The TWT is a wide-bandwidth, velocity-modulated tube used primarily as an amplifier. The electron beam is bunched by a signal applied to the HELIX. The bunching causes an energy transfer from the electron beam to the traveling wave on the helix.

The MAGNETRON is a DIODE OSCILLATOR capable of delivering microwave energy at very high power levels. Three fields exist within a magnetron that influence operation: (1) the DC ELECTRIC FIELD between the anode and cathode; (2) the AC ELECTRIC FIELD produced by the oscillating resonant cavities and on the same plane as the dc field; and (3) the MAGNETIC FIELD produced by the permanent magnet which is perpendicular to the dc electric field.

Magnetrons are of two basic types, the NEGATIVE-RESISTANCE MAGNETRON and the
ELECTRON-RESONANCE MAGNETRON. A diagram of a magnetron is shown at the right.
 

LECTRON-RESONANCE MAGNETRON

 


2-61


 


SOLID-STATE MICROWAVE DEVICES are becoming increasingly widespread in microwave equipment with new developments almost daily. Most of the currently available solid-state devices are two-terminal diodes with the capability to generate or amplify microwave energy. Many of the solid-state devices, such as the TUNNEL DIODE and the BULK-EFFECT DIODE, apply the property of NEGATIVE RESISTANCE to amplify microwave signals or generate microwave energy. A characteristic curve illustrating the negative-resistance property of the tunnel diode is shown at the right.



Tunnel diode curve




The VARACTOR is a two-terminal diode that acts as a variable capacitance and is the active element of PARAMETRIC AMPLIFIERS. The parametric amplifier is a low-noise microwave amplifier that uses variable reactance to amplify microwave signals. The illustration shows an example of a NONDEGENERATIVE PARAMETRIC AMPLIFIER.


2-62



 

Parametric amplifier


ANSWERS TO QUESTIONS Q1. THROUGH Q74.

 


A-1. Impedance decreases.

A-2. Degenerative feedback.

A-3. Transit time causes the grid voltage and plate current to be out of phase.

A-4. Transit time.

A-5. Velocity.

A-6. The electron will be accelerated.

A-7. By alternately speeding up or slowing down the electrons.

A-8. The buncher grids.

A-9. There is no effect.

A-10. The frequency period of the buncher grid signal. A-11. Velocity modulation.
 
 

2-63




A-12. The accelerator grid and the buncher grids.

A-13. The catcher cavity.

A-14. Amplifier.

A-15. Intermediate cavities between the input and output cavities.

A-16. A large negative pulse is applied to the cathode.

A-17. The middle cavity.

A-18. The bandwidth decreases.

A-19. Stagger tuning.

A-20. The reflector or repeller.

A-21. Velocity.

A-22. Three-quarter cycle.

A-23. Mode 2.

A-24. Power is reduced.

A-25. The half-power points of the mode.

A-26. Voltage amplification.

A-27. Used to focus the electrons into a tight beam.

A-28. The directional couplers are not physically connected to the helix.

A-29. The traveling wave must have a forward velocity equal to or less than the speed of the electrons in the beam.

A-30. The helix.

A-31. Helix.

A-32. A magnetic field.

A-33. Anode or plate.

A-34. The resonant cavities.

A-35. The permanent magnet.

A-36. The critical value of field strength.

A-37. Circular.

A-38. The negative-resistance magnetron has a split plate.

A-39. The application of the proper magnetic field.

 


2-64




A-40. To reduce the effects of filament bombardment.

A-41. Rising-sun block.

A-42. Series.

A-43. Working electrons.

A-44. Greater power output.

A-45. Loops and slots.

A-46. Inductive.

A-47. A cookie-cutter tuner.

A-48. Baking in.

A-49. The tunneling action.

A-50. The tuned circuit or cavity frequency.

A-51. To increase the stability.

A-52. Prevent feedback to the tuned input circuit.

A-53. Stability problems.

A-54. Variable capacitor.

A-55. Reactance.

A-56. The low-noise characteristic.

A-57. By varying the amount of capacitance in the circuit.

A-58. Supplies the electrical energy required to vary the capacitance.

A-59. Exactly double the input frequency.

A-60. The pump signal of a nondegenerative parametric amplifier is higher than twice the input signal.

A-61. Idler- or lower-sideband frequency.

A-62. The sum of the input frequency and the pump frequency.

A-63. Larger microwave power outputs.

A-64. The electrons become immobile.

A-65. Threshold.

A-66. A field of much greater intensity.

A-67. The frequency.


2-65




A-68. PNIN.

A-69. The negative-resistance property.

A-70. To form a small region of p-type material.

A-71. Lower.

A-72. Lower forward resistance and low noise.

A-73. Variable resistance.

A-74. A switching device.


2-66



Introduction to Matter, Energy, and Direct Current, Introduction to Alternating Current and Transformers, Introduction to Circuit Protection, Control, and Measurement, Introduction to Electrical Conductors, Wiring Techniques, and Schematic Reading, Introduction to Generators and Motors, Introduction to Electronic Emission, Tubes, and Power Supplies, Introduction to Solid-State Devices and Power Supplies, Introduction to Amplifiers, Introduction to Wave-Generation and Wave-Shaping Circuits, Introduction to Wave Propagation, Transmission Lines, and Antennas, Microwave Principles, Modulation Principles, Introduction to Number Systems and Logic Circuits, Introduction to Microelectronics, Principles of Synchros, Servos, and Gyros, Introduction to Test Equipment, Radio-Frequency Communications Principles, Radar Principles, The Technician's Handbook, Master Glossary, Test Methods and Practices, Introduction to Digital Computers, Magnetic Recording, Introduction to Fiber Optics