Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes USAF radar shop Notable Quotes App Notes Calculators Education Engineering Magazines RF Cafe Software,T-Shirts,Coffee Mugs Engineering magazine articles Engineering software Engineering smorgasbord RF Cafe Archives RF Cascade Workbook 2018 RF Stencils for Visio RF & EE Shapes for Word Advertising RF Cafe Homepage Sudoku puzzles Facebook Test notes Thank you for visiting RF Cafe!

Navy Electricity and Electronics Training Series (NEETS)
Module 9—Introduction to Wave- Generation and Wave-Shaping
Chapter 1:  Pages 1-1 through 1-10

NEETS   Module 9 — Introduction to Wave- Generation and Wave-Shaping

Pages i - ix, 1-1 to 1-10, 1-11 to 1-20, 1-21 to 1-30, 1-31 to 1-40, 1-41 to 1-52, 2-1 to 2-10, 2-11 to 2-20, 2-21 to 2-30, 2-31 to 2-38,
             3-1 to 3-10, 3-11 to 3-20, 3-21 to 3-30, 3-31 to 3-40, 3-41 to 3-50, 3-51 to 3-56, 4-1 to 4-10, 4-11 to 4-20, 4-21 to 4-30,
             4-31- to 4-40, 4-41 to 4-50, 4-51 to 4-61, Index








Learning objectives are stated at the beginning of each chapter. These learning objectives serve as a preview of the information you are expected to learn in the chapter. The comprehensive check questions are based on the objectives. By successfully completing the OCC/ECC, you indicate that you have met the objectives and have learned the information. The learning objectives are listed below.
Upon completion of this chapter, you will be able to:
1.   State the applications of a resonant circuit.
2.   Identify the conditions that exist in a resonant circuit.
3.   State and apply the formula for resonant frequency of an AC circuit.
4.   State the effect of changes in inductance (L) and capacitance (C) on resonant frequency (fr).
5.   Identify the characteristics peculiar to a series resonant circuit.
6.   Identify the characteristics peculiar to a parallel resonant circuit.
7.   State and apply the formula for Q.
8.   State what is meant by the bandwidth of a resonant circuit and compute the bandwidth for a given circuit.
9.   Identify the four general types of filters.

10.   Identify how the series- and parallel-resonant circuit can be used as a bandpass or a band-reject filter.




When your radio or television set is turned on, many events take place within the "receiver" before you hear the sound or see the picture being sent by the transmitting station.
Many different signals reach the antenna of a radio receiver at the same time. To select a station, the listener adjusts the tuning dial on the radio receiver until the desired station is heard. Within the radio or TV receiver, the actual "selecting" of the desired signal and the rejecting of the unwanted signals are accomplished by what is called a TUNED CIRCUIT. A tuned circuit consists of a coil and a capacitor connected in series or parallel. Later in this chapter you will see the application and advantages of both series- and parallel-tuned circuits. Whenever the characteristics of inductance and capacitance are found in a tuned circuit, the phenomenon as RESONANCE takes place.
You learned earlier in the Navy Electricity and Electronics Training Series, Module 2, chapter 4, that inductive reactance (XL) and capacitive reactance (XC) have opposite effects on circuit impedance (Z).




You also learned that if the frequency applied to an LCR circuit causes XL and XC  to be equal, the circuit is RESONANT.
If you realize that XL and XC  can be equal ONLY at ONE FREQUENCY (the resonant frequency), then you will have learned the most important single fact about resonant circuits. This fact is the principle that enables tuned circuits in the radio receiver to select one particular frequency and reject all others. This is the reason why so much emphasis is placed on XL and X C  in the discussions that follow.

Examine figure 1-1. Notice that a basic tuned circuit consists of a coil and a capacitor, connected either in series, view (A), or in parallel, view (B). The resistance (R) in the circuit is usually limited to the inherent resistance of the components (particularly the resistance of the coil). For our purposes we are going to disregard this small resistance in future diagrams and explanations.


Basic tuned circuits.  SERIES TUNED CIRCUIT - RF Cafe

Figure 1-1A.—Basic tuned circuits.  SERIES TUNED CIRCUIT


Basic tuned circuits.  PARALLEL TUNED CIRCUIT - RF Cafe

Figure 1-1B.—Basic tuned circuits.  PARALLEL TUNED CIRCUIT


You have already learned how a coil and a capacitor in an AC circuit perform. This action will be the basis of the following discussion about tuned circuits.

Why should you study tuned circuits? Because the tuned circuit that has been described above is used in just about every electronic device, from remote-controlled model airplanes to the most sophisticated space satellite.




You can assume, if you are going to be involved in electricity or electronics, that you will need to have a good working knowledge of tuned circuits and how they are used in electronic and electrical circuits.




First we will review the effects of frequency on a circuit which contains resistance, inductance, and capacitance. This review recaps what you previously learned in the Inductive and Capacitive Reactance chapter in module 2 of the NEETS.

Perhaps the most often used control of a radio or television set is the station or channel selector. Of course, the volume, tone, and picture quality controls are adjusted to suit the individual's taste, but very often they are not adjusted when the station is changed. What goes on behind this station selecting? In this chapter, you will learn the basic principles that account for the ability of circuits to "tune" to the desired station.
Effect of Frequency on Inductive Reactance

In an AC circuit, an inductor produces inductive reactance which causes the current to lag the voltage by 90 degrees. Because the inductor "reacts" to a changing current, it is known as a reactive component. The opposition that an inductor presents to AC is called inductive reactance (XL). This opposition is caused by the inductor "reacting" to the changing current of the AC source. Both the inductance and the frequency determine the magnitude of this reactance. This relationship is stated by the formula:


XL = 2πfL



XL =  the inductive reactance in ohms

f    =  the frequency in hertz

L   =  the inductance in henries

π   =  3.1416


As shown in the equation, any increase in frequency, or "f," will cause a corresponding increase of inductive reactance, or "XL." Therefore, the INDUCTIVE REACTANCE VARIES DIRECTLY WITH THE FREQUENCY. As you can see, the higher the frequency, the greater the inductive reactance; the lower the frequency, the less the inductive reactance for a given inductor. This relationship is illustrated in figure 1-2. Increasing values of XL are plotted in terms of increasing frequency. Starting at the lower left corner with zero frequency, the inductive reactance is zero. As the frequency is increased (reading to the right), the inductive reactance is shown to increase in direct proportion.






Effect of frequency on inductive reactance - RF Cafe

Figure 1-2.—Effect of frequency on inductive reactance.


Effect of Frequency on Capacitive Reactance

In an AC circuit, a capacitor produces a reactance which causes the current to lead the voltage by 90 degrees. Because the capacitor "reacts" to a changing voltage, it is known as a reactive component. The opposition a capacitor presents to AC is called capacitive reactance (XC). The opposition is caused by the capacitor "reacting" to the changing voltage of the AC source. The formula for capacitive reactance is:


Formula for capacitive reactance - RF Cafe



XC =  the capacitive reactance in ohms

f    =  the frequency in hertz

C   =  the capacitance in farads

π   =  3.1416



In contrast to the inductive reactance, this equation indicates that the CAPACITIVE REACTANCE VARIES INVERSELY WITH THE FREQUENCY. When f = 0, XC  is infinite (∞) and decreases as frequency increases. That is, the lower the frequency, the greater the capacitive reactance; the higher the frequency, the less the reactance for a given capacitor.

As shown in figure 1-3, the effect of capacitance is opposite to that of inductance. Remember, capacitance causes the current to lead the voltage by 90 degrees, while inductance causes the current to lag the voltage by 90 degrees.






Effect of frequency on capacitive reactance - RF Cafe

Figure 1-3.—Effect of frequency on capacitive reactance.


Effect of Frequency on Resistance

In the expression for inductive reactance, XL = 2πfL, and in the expression for capacitive reactance,


Expression for capacitive reactance - RF Cafe


both contain "f" (frequency). Any change of frequency changes the reactance of the circuit components as already explained. So far, nothing has been said about the effect of frequency on resistance. In an Ohm's law relationship, such as R = E/I no "f" is involved. Thus, for all practical purposes, a change of frequency does not affect the resistance of the circuit. If a 60-hertz AC voltage causes 20 milliamperes of current in a resistive circuit, then the same voltage at 2000 hertz, for example, would still cause 20 milliamperes to flow.
NOTE: Remember that the total opposition to AC is called impedance (Z). Impedance is the combination of inductive reactance (XL), capacitive reactance (XC), and resistance (R). When dealing with AC circuits, the impedance is the factor with which you will ultimately be concerned. But, as you have just been shown, the resistance (R) is not affected by frequency. Therefore, the remainder of the discussion of AC circuits will only be concerned with the reactance of inductors and capacitors and will ignore resistance.
AC Circuits Containing Both Inductive and Capacitive Reactances

AC circuits that contain both an inductor and a capacitor have interesting characteristics because of the opposing effects of L and C. XL and XC  may be treated as reactors which are 180 degrees out of phase. As shown in figure 1-2, the vector for XL should be plotted above the baseline; vector for XC, figure 1-3, should be plotted below the baseline. In a series circuit, the effective reactance, or what is termed the RESULTANT REACTANCE, is the difference between the individual reactances. As an equation, the resultant reactance is:






X = XL  - XC


Suppose an AC circuit contains an XL of 300 ohms and an XC  of 250 ohms. The resultant reactance


X = XL  - XC  = 300 - 250 = 50 ohms (inductive)


In some cases, the XC  may be larger than the XL. If XL  = 1200 ohms and XC  = 4000 ohms, the difference is: X = XL - XC  = 1200 - 4000 = -2800 ohms (capacitive). The total carries the sign (+ or -) of the greater number (factor).
Q-1.   What is the relationship between frequency and the values of (a) XL, (b) XC, and (c) R?

Q-2.   In an AC circuit that contains both an inductor and a capacitor, what term is used for the difference between the individual reactances?




For every combination of L and C, there is only ONE frequency (in both series and parallel circuits) that causes XL to exactly equal XC; this frequency is known as the RESONANT FREQUENCY. When the resonant frequency is fed to a series or parallel circuit, XL becomes equal to XC, and the circuit is said to be RESONANT to that frequency. The circuit is now called a RESONANT CIRCUIT; resonant circuits are tuned circuits. The circuit condition wherein XL becomes equal to XC  is known as
Each LCR circuit responds to resonant frequency differently than it does to any other frequency. Because of this, an LCR circuit has the ability to separate frequencies. For example, suppose the TV or radio station you want to see or hear is broadcasting at the resonant frequency. The LC "tuner" in your set can divide the frequencies, picking out the resonant frequency and rejecting the other frequencies. Thus, the tuner selects the station you want and rejects all other stations. If you decide to select another station, you can change the frequency by tuning the resonant circuit to the desired frequency.

As stated before, the frequency at which XL equals XC  (in a given circuit) is known as the resonant frequency of that circuit. Based on this, the following formula has been derived to find the exact resonant frequency when the values of circuit components are known:


Resonant frequency formula - RF Cafe


There are two important points to remember about this formula. First, the resonant frequency found when using the formula will cause the reactances (XL and XC) of the L and C components to be equal. Second, any change in the value of either L or C will cause a change in the resonant frequency.

An increase in the value of either L or C, or both L and C, will lower the resonant frequency of a given circuit. A decrease in the value of L or C, or both L and C, will raise the resonant frequency of a given circuit.




The symbol for resonant frequency used in this text is f. Different texts and references may use other symbols for resonant frequency, such as fo, Fr, and fR. The symbols for many circuit parameters have
been standardized while others have been left to the discretion of the writer. When you study, apply the rules given by the writer of the text or reference; by doing so, you should have no trouble with

nonstandard symbols and designations.
The resonant frequency formula in this text is:


Resonant frequency formula - RF Cafe



fr  =  the resonant frequency in Hertz

L  =  the inductance in Heries

C  =  the capacitance in Farads

π   =  3.1416




By substituting the constant .159 for the quantity


Equation - RF Cafe


the formula can be simplified to the following:


Formula - RF Cafe


Let's use this formula to figure the resonant frequency (fr). The circuit is shown in the practice tank circuit of figure 1-4.


Practice tank circuit - RF Cafe

Figure 1-4.—Practice tank circuit.








L = 2mH (2 x 10-3 H)


C = 300pF (300 x 10-12 F)



Formula - RF Cafe


The important point here is not the formula nor the mathematics. In fact, you may never have to compute a resonant frequency. The important point is for you to see that any given combination of L and C can be resonant at only one frequency; in this case, 205 kHz.

The universal reactance curves of figures 1-2 and 1-3 are joined in figure 1-5 to show the relative values of XL and XL at resonance, below resonance, and above resonance.






Relationship between XL and XC  as frequency increases - RF Cafe

Figure 1-5.—Relationship between XL and XC  as frequency increases.


First, note that fr, (the resonant frequency) is that frequency (or point) where the two curves cross. At this point, and ONLY this point, XL equals XC. Therefore, the frequency indicated by fr  is the one and only frequency of resonance. Note the resistance symbol which indicates that at resonance all reactance is cancelled and the circuit impedance is effectively purely resistive. Remember, AC circuits that are resistive have no phase shift between voltage and current. Therefore, at resonance, phase shift is cancelled. The phase angle is effectively zero.
Second, look at the area of the curves to the left of fr. This area shows the relative reactances of the circuit at frequencies BELOW resonance. To these LOWER frequencies, XC  will always be greater than XL. There will always be some capacitive reactance left in the circuit after all inductive reactance has been cancelled. Because the impedance has a reactive component, there will be a phase shift. We can also state that below fr  the circuit will appear capacitive.
Lastly, look at the area of the curves to the right of f. This area shows the relative reactances of the circuit at frequencies ABOVE resonance. To these HIGHER frequencies, XL will always be greater than XC. There will always be some inductive reactance left in the circuit after all capacitive reactance has been cancelled. The inductor symbol shows that to these higher frequencies, the circuit will always appear

to have some inductance. Because of this, there will be a phase shift.




Resonant circuits may be designed as series resonant or parallel resonant. Each has the ability to discriminate between its resonant frequency and all other frequencies. How this is accomplished by both series- and parallel-LC circuits is the subject of the next section.
NOTE: Practical circuits are often more complex and difficult to understand than simplified versions. Simplified versions contain all of the basic features of a practical circuit, but leave out the nonessential features. For this reason, we will first look at the IDEAL SERIES-RESONANT CIRCUIT— a circuit that really doesn't exist except for our purposes here.




The ideal series-resonant circuit contains no resistance; it consists of only inductance and capacitance in series with each other and with the source voltage. In this respect, it has the same characteristics of the series circuits you have studied previously. Remember that current is the same in all parts of a series circuit because there is only one path for current.
Each LC circuit responds differently to different input frequencies. In the following paragraphs, we will analyze what happens internally in a series-LC circuit when frequencies at resonance, below resonance, and above resonance are applied. The L and C values in the circuit are those used in the problem just studied under resonant-frequency. The frequencies applied are the three inputs from figure

1-6. Note that the resonant frequency of each of these components is 205 kHz, as figured in the problem.


Output of the resonant circuit - RF Cafe

Figure 1-6.—Output of the resonant circuit.


How the Ideal Series-LC Circuit Responds to the Resonant Frequency (205 kHz)



Formula - RF Cafe


Note: You are given the values of XL, XC, and fr  but you can apply the formulas to figure them. The values given are rounded off to make it easier to analyze the circuit.

First, note that XL and XC  are equal. This shows that the circuit is resonant to the applied frequency of 205 kHz. XL and XC  are opposite in effect; therefore, they subtract to zero. (2580 ohms - 2580 ohms = zero.) At resonance, then, X = zero. In our theoretically perfect circuit with zero resistance and zero reactance, the total opposition to current (Z) must also be zero.




Introduction to Matter, Energy, and Direct Current, Introduction to Alternating Current and Transformers, Introduction to Circuit Protection, Control, and Measurement, Introduction to Electrical Conductors, Wiring Techniques, and Schematic Reading, Introduction to Generators and Motors, Introduction to Electronic Emission, Tubes, and Power Supplies, Introduction to Solid-State Devices and Power Supplies, Introduction to Amplifiers, Introduction to Wave-Generation and Wave-Shaping Circuits, Introduction to Wave Propagation, Transmission Lines, and Antennas, Microwave Principles, Modulation Principles, Introduction to Number Systems and Logic Circuits, Introduction to Microelectronics, Principles of Synchros, Servos, and Gyros, Introduction to Test Equipment, Radio-Frequency Communications Principles, Radar Principles, The Technician's Handbook, Master Glossary, Test Methods and Practices, Introduction to Digital Computers, Magnetic Recording, Introduction to Fiber Optics
Windfreak Technologies RF Cascade Workbook 2018 by RF Cafe
Rohde & Schwarz USA (RF Component Pocket Guide) - RF Cafe Axiom Test Equipment - RF Cafe
About RF Cafe
Kirt Blattenberger - RF Cafe Webmaster
Copyright: 1996 - 2018
    Kirt Blattenberger,

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:  AirplanesAndRockets.com