  # Module 1 - Introduction to Matter, Energy, and Direct CurrentNavy Electricity and Electronics Training Series (NEETS)Chapter 1:  Pages 1-51 through 1-60  The NORTH POLE, or north seeking pole, a magnet freely suspended on a string always points toward the north geographical pole.

The LIKE POLES magnets repel each other, while the unlike poles attract each other.

1-51

WEBER'S THEORY of MAGNETISM assumes that all magnetic material is made up magnetic molecules which, if lined up in north to south pole order, will be a magnet. If not lined up, the magnetic fields about the molecules will neutralize each other and no magnetic effect will be noted. The DOMAIN THEORY of MAGNETISM states that if the electrons the atoms in a material spin more in one direction than in the other, the material will become magnetized. A MAGNETIC FIELD is said to exist in the space surrounding a magnet.

1-52 MAGNETIC LINES of FORCE are imaginary lines used to describe the patterns the magnetic field about a magnet. These lines are assumed to flow externally from the north pole and into the south pole. MAGNETIC FLUX is the total number magnetic lines force leaving or entering the pole a magnet.

1-53 FLUX DENSITY is the number flux lines per unit area.

FIELD INTENSITY or the intensity a magnetic field is directly related to the magnetic force exerted by the field.

The INTENSITY ATTRACTION/REPULSION between magnetic poles may be described by a law almost identical to Coulomb's Law Charged Bodies, that is, the force between two poles is directly proportional to the product the pole strengths and inversely proportional to the square the distance between the poles.

MAGNETIC SHIELDING can be accomplished by placing a cast iron shield around the object to be protected, thus directing the lines force around the object.

1-54 MAGNETS are CLASSIFIED by SHAPE and include the bar magnet, the horseshoe magnet, and the ring magnet. The ring magnet is used in computer memory circuits; the horseshoe magnet in some meter circuits.

ENERGY may be defined as the ability to do work.

The COULOMB (C) is the basic unit used to indicate an electrical charge. One coulomb is equal to a charge 6.28 x 1018  electrons. When one coulomb charge exists between two bodies, the electromotive force (or voltage) is one volt.

VOLTAGE is measured as the difference potential two charges interest.

VOLTAGE MEASUREMENTS may be expressed in the following units: volts (V), kilovolts (kV), millivolts (mV), or microvolts (μV).

For example:

1 kV  = 1,000 V

1 mV = 0.001 V

1  V  = 0.000001 V

METHODS of PRODUCING a VOLTAGE include:

1.  Friction

2.  Pressure (piezoelectricity)

1-55 3.  Heat (thermoelectricity) 1-56

4.  Light (photoelectricity) 5.  Chemical action (battery)

1-57 6.  Magnetism (electromagnetic induction generator)

ELECTROMAGNETIC INDUCTION GENERATOR To produce voltage by use magnetism, three conditions must be met: There must be a CONDUCTOR in which the voltage will be produced; there must be a MAGNETIC FIELD in the conductor's vicinity; and there must be relative motion between the field and conductor. When these conditions are met, electrons WITHIN THE CONDUCTOR are propelled in one direction or another, creating an electromotive force, or voltage. 1-58

ELECTRON CURRENT is based on the assumption that electron current flow is from negative to positive through a circuit.

An ELECTRIC CURRENT is a directed movement electrons in a conductor or circuit.

The AMPERE is the basic unit used to indicate an electric current. A current one ampere is said to flow when one coulomb charge (6.28 x 1018  electrons) passes a given point in one second time. Current measurements may be expressed in the following units: ampere (A), milliampere (mA), and microampere (μA). Current in a circuit increases in direct proportion to the voltage (emf) applied across the circuit.

RESISTANCE is the opposition to current. The ohm is the basic unit resistance and is represented by the Greek letter omega (Ω). A conductor is said to have one ohm resistance when an emf one volt causes one ampere current to flow in the conductor. Resistance may be expressed in the following units: ohm (Ω), kilohm (kΩ), and megohms (MΩ). For example, 1,000,000 Ω  = 1,000 kΩ  = 1 MΩ.

The RESISTANCE of a MATERIAL is determined by the type, the physical dimensions, and the temperature the material that is,

1.  A good conductor contains an abundance free electrons.

2.  As the cross-sectional area a given conductor is increased, the resistance will decrease.

3.  As the length a conductor is increased, the resistance will increase.

4.  In a material having a positive temperature coefficient, the resistance will increase as the temperature is increased.

The CONDUCTANCE of a MATERIAL is the reciprocal resistance.

The UNIT of CONDUCTANCE is the mho and the symbol is V. G or S.

The RESISTOR is manufactured to provide a specific value resistance.

1-59

The CARBON RESISTOR is made carbon, with fillers and binders blended in to control the ohmic value. The RESISTANCE of a WIREWOUND RESISTOR is determined by the metal content the wire and the wire's length. Wirewound resistors may be tapped so two or more different voltage values may be taken f the same resistor. 1-60    About RF Cafe Copyright: 1996 - 2024Webmaster:    Kirt Blattenberger,    BSEE - KB3UON RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ... All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged. My Hobby Website:  AirplanesAndRockets.com 