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In our last chapter, we derived our third form of Maxwell’s Equations, which we called the
computational form:
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Where:

E = Electric field in V/m
B = Magnetic flux density, B=µH
H = Magnetic field in Amps/m
V = Voltage
A = Vector potential
ρn = Charge density in Coulombs/m3 of a particular charge element, n
rn =  Distance from a given charge or current element, n, to the location of interest
vn = Volume of a particular charge element, n
ln =  Length of a particular current element, n
an = Area of a particular current element, n
Jn =  Total current density (both conductive and displacement) in amps/ m2 of a particular
current element, n
ε, µ = Permittivity and permeability respectively

The magic of these equations lies in their suitability for computational use.  To solve Maxwell’s
Equations for a given assemblage of wires and sources, all we need to know is the distribution of 
current and charge.  Equations 1(c) and 1(d) allow us to compute the voltages and vector potential



over a volume of interest.  Equations 1(a) and 1(b) then allow us to compute the free space electric
and magnetic fields at any point in that volume by simple summation.

It is time to put these equations to work by computing the radiation from a simple structure, a short
wire element.  We choose for our element the one shown in Figure 1.  It is a short piece of wire with
the following properties:
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Where:
l  = length of wire in meters
ω = frequency in radians = 2πf
λ = wavelength in meters
d  = diameter of wire in meters
I  = current on the wire in amps

Note that this wire element has constant current along its entire finite length.  Since the current has to
go somewhere two plates are provided, one at each end.  They form a capacitor and serve as
reservoirs of charge. 



Figure 1: A small wire element carries a current I.  Our task is to derive the magnetic and electric fields at any
given observation point.  The length of the wire element is l.  We will be using two coordinate systems, Cartesian

(x,y,z) and spherical (r, θθθθ, φφφφ ).

We will start our analysis by computing the vector potential A.  A is always aligned with the currents
that produce it.  Since we only have currents in the z direction, A will only point in the z direction. 
A is simply:
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Where:
Jn = current density on a wire element in amps/meter2

an  = area of wire element n in meter2



In = current on a wire element in amps

However, these results are not complete.  We have to account for the fact that the vector potential
propagates as a wave through space.  Since our hypothetical wire element is suspended in free space,
this wave propagates away from the wire element with the speed of light, c.  To account for this
propagation, we adjust the solution in by adding a phase term:

)cos(0 ωτ−ω= tII

Where:
τ = Time to the observation point in seconds
ω = Frequency in radians per second
ωτ = Total phase change in radians

The term ωτ accounts for the fact that the vector potential at the observation point is a function of
something that happened earlier, namely the current at the source at time t-τ .  The time it takes for
the field to propagate to the observation point is equal to the distance r divided by the speed of light:
τ= r/c.  Therefore:
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I* is known as the “retarded current”.  The use of retarded currents and retarded potentials are
common in electromagnetics.  As above, their purpose is to account for the finite propagation speed
of electromagnetic waves as they move through space. 

In the case of our wire element, the vector potential A is plotted in Figure 2. 



Figure 2: The vector potential A is plotted.  The small current element creates a vector potential which falls off
linearly with distance.  It reverses in phase every half wavelength as it propagates outward.

From our solution for the vector potential A we can compute the magnetic flux density B using
Equation 1(b).  Note that the magnetic flux density, and hence the magnetic field, is a function only
of A, and hence only a function of the currents.  Computing the curl is somewhat complex
mathematically, but we can get an intuitive feel from Figure 3.  As previously described chapters, we
can use an imaginary paddlewheel-type device to test for the existence of curl in a field.  At Point 1
in Figure 3, the vector potential to the right of the axis of the paddlewheel is greater than that to the
left and in an opposing direction.  This causes the paddlewheel to turn, demonstrating that there is
curl at that point.  The curl of a vector field is a vector in itself whose direction is determined by the
right hand rule.  The fingers of the right hand point in the direction of the paddlewheel spin and the
thumb gives us the direction of the curl.  The curl of the vector potential at point 1, which is equal to
the magnetic flux density, points toward the reader (outward from the page).  At Point 2, the opposite
is true.  At Point 3, the paddlewheel does not spin.  There is no curl at all.

With a little bit of imagination we can discern that:

1. There is no curl in the z direction.



2. The curl of the vector potential points only in the φ direction.
3. Even in the φ direction, there is no curl along the z axis.

Figure 3: The vector potential A is used to calculate the magnetic flux density, B, and the magnetic field, H.  The
magnetic flux density is equal to the curl of the vector potential.  We can get an intuitive feel for the magnitude

and direction of the curl by using an imaginary paddlewheel, shown in the upper left hand corner.  Inserted into
the field, it will spin if the vectors on one side of the paddlewheel are different than on the other.  At Point 1, there
is curl in the counterclockwise direction and at Point 2, the clockwise direction.  There is no curl at Point 3.  The

direction of the magnetic field is determined by the right hand rule.  The fingers of the right hand point in the
direction of the curl.  Therefore, the magnetic field at Point 1 points outward and at Point 2, inward.

Having calculated the vector potential and studied in at least an intuitive way the form of the
magnetic field, our next step is to compute the scalar potential V.  To do this, we need to know the
distribution of the charge at any given point in time.  The charge is related to the current on the wire
by:

C+Idt=q

dt
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∫



We can ignore the constant C (static charge) and compute q as follows: 
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For brevity, in the analysis that follows we will assume that the last mathematical step is always to
take the real part of the solution, and simple state that:
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We assumed above that the current I was constant over the length of the wire, but we do not make
the same assumption for the charge q.  Rather, we assume just the opposite, that the charge q tends to
be concentrated on the plates at the ends of the wire.



Figure 4: The small wire element  is assumed to have its charge concentrated on the plates at its ends.  The voltage
at an observation point is calculated from the electric field.  Some simplifying geometric assumptions are used.

The voltage at an observation point can be computed knowing the distribution of charge (Equation
1(c). 
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Once again, we will account for propagation time by using retarded currents.
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By assuming that r >> l,  l >>d, r1 = r - (l/2) cos θ,  r2 = r + (l/2) cos θ  and λ >> l, we can show that
this equation is equal to the following (see Appendix A for derivation):
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We are almost ready to compute the magnetic and electric fields.  However, we will find it
convenient to use spherical coordinates instead of Cartesian coordinates.  The transformation
between coordinate systems is illustrated in Figure 5. 

Figure 5: Conversion from Cartesian to spherical coordinates in the x, z plane is illustrated.

Expressing the vector potential in spherical coordinates we have:
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To find B, and hence the magnetic field H=B/µ0, we take the curl of A.  In a previous chapter, we
derived the curl operation in Cartesian coordinates.  We will dispense with a similar derivation in
spherical coordinates and just state the formula for curl in spherical coordinates here. Where, as in
this case, Aφ=0, ∂Aθ/∂φ=0 and ∂Ar/∂φ=0:
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Solving for the term ∂(rAθ)/∂r:
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Solving for the term ∂Ar/∂θ:
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The curl of A is therefore:
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That solves for the magnetic field.  To find the electric field, we use Equation 1(a).
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As with the curl operation, we introduced the gradient operation in an earlier chapter and derived it
in Cartesian coordinates.  As above, we will dispense with the derivation here and just state the
formula for the gradient in spherical coordinates.  Where, as here, ∂V/∂φ=0, the gradient of the
voltage expressed in spherical coordinates is:
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Solving for the electric field in the r direction:
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In Appendix B we show that this is equal to:
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For Eθ:
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We now can definitively state the solution to Maxwell’s Equations for the short current element in
Figure 1:
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These three equations may seem a jumble, but they can be dissected readily to reveal the underlying
physics of radiation from a wire element.  Take the expression for the magnetic field:

component        component      pattern       (retarded)                  
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Four fundamental elements make up the expression:  a constant, a current element adjusted for
propagation (that is, retarded), a pattern term, and two terms which denote the fall off of the field
with distance.  One of these terms is proportional to 1/r, the other to 1/r2 .  The first denotes the “far
field” component of the magnetic field, and the latter the “near field” component.  We define the far
field as follows:
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At a distance much greater than λ/2π (far field), the magnetic field can be expressed as:
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In the near field, where r<< λ/2π:
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The electric far field is defined using the same criteria as the magnetic far field, that is the far field
is defined as existing where r>>λ/2π .  Indeed, in the far field the radial electric field, Er , can be
ignored and the electric field considered equal to:
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In the near electric field:
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Much of our interest will focus on the far fields.  Once again, these are:
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Note the following:

1.  The magnetic and electric fields are oriented 90 degrees from each other in space, and
2.  The fields are in time phase.

We have seen this combination of magnetic and electric fields before.  These equations describe a
plane wave.  The direction of movement is determined by the cross-product of the two fields:

HEP ×=

The vector P is known as the Poynting vector.  The electric field E is in units of V/m, and the
magnetic field H in A/m.  Their product is in units of W/m2, representing the energy per unit area
being carried outward by the wave. 



The ratio of two fields is in units of ohms and is equal to:
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The value 377 ohms is known as the free space impedance.

In the near field:
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The near electric and magnetic fields are not in time phase.  For example, at  θ=90 degrees,
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First, we note that the propagation term e-βr can be ignored in the near field.  Then, expanding ejωt :







ω
ω

επ





ω

π







ω

ωω
επ





ωεπ





ωεπ





ωω

π





π





π

θ

φ

ω
θ

ω
φ

r

1
  )t(  I 

4

1
=]ERe[

r

1
 )t(  I 

4

1
=]HRe[

rj

1
 )t jsin +t ( I 

4

1
=

rj

1
 eI 

4

1
=

rj

1
 I 

4

1
=E

r

1
 )t jsin +t ( I 

4

1
=

r

1
 eI 

4

1
=

r

1
 I 

4

1
=H

30
0

20

30
0

3
tj

0
0

3
*

0

202
tj

02
*

sin

cos

cos

cos

!

!

!!!

!!!



The two fields are out of phase in time, just as V and I are out of phase in a reactive circuit.  No
power is dissipated into space through the action of the near fields.  Energy is just temporarily
stored in the magnetic and electric near fields just as energy is temporarily stored in the capacitors
and inductors of a reactive circuit.

In our next chapter, we will apply our solutions for the short wire element to real world antennas
such as half wave dipoles.  From then on, things will get easier as we let our computers do most of
the work.
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Appendix A

We start with these formulas:
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From Figure 4 we note that where r>>l and λ>>r:
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So the voltage is equal to:
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By substitution, and noting that r >> l, the last term is equal to:
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We can further simplify this expression by noting that:
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We can state that the voltage is approximately equal to:
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Appendix B

We start with the expression for the radial electric field, Er :
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This partial derivative is equal to:
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We note that:
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Plugging this result in yields:
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