All RF Cafe quizzes would make perfect fodder for employment interviews for technicians or engineers  particularly those who are fresh out
of school or are relatively new to the work world. Come to think of it, they would make equally excellent study material for the same persons
who are going to be interviewed for a job.
Click here for the complete list of RF Cafe
Quizzes.
Note: Many answers contain passages quoted in whole or in part from the text.
Return to RF Cafe Quiz #64
This
quiz is based on the information presented in
SpaceTime Adaptive Processing for Radar, by J. R. Guerci.
Note: Some of these books are available as prizes in the monthly
RF Cafe Giveaway
"Spacetime adaptive processing (STAP) is an exciting technology for advanced radar systems that allows for significant
performance enhancements over conventional approaches. Based on a timetested course taught in industry, government
and academia, this second edition reviews basic STAP concepts and methods, placing emphasis on implementation in
realworld systems. It addresses the needs of radar engineers who are seeking to apply effective STAP techniques
to their systems, and serves as an excellent reference for nonradar specialists with an interest in the signal
processing applications of STAP. "
1. What was the original application of SpaceTime Adaptive Processing (STAP)?
a) Moving target indication (MTI) radar
STAP was a term originally used for airborne multichannel moving target indication (MTI) radar.
(see page 53).
2. Why is moving target indication processing needed?
b) To enable detection of nonstationary objects within a background of stationary objects
The need for joint space and time processing in either airborne of spaceborne MTI radar arises from the inherent
twodimensional, angleDoppler nature of ground clutter when observed from a moving platform.
(see page 1)
3. What advantage does narrowband (c/B >> Nd) electromagnetic plane wave provide?
B = modulation bandwidth, N = number of elements, d = interelement spacing
d) Insures propagation across the array is manifested as a simple phase shift.
The effect of a unitamplitude, narrowband EM plane wave impinging on an Nelement ULA (uniform linear array)
insures that propagation delay across the array is manifested as a simple phase shift.
(see page 13)
4. What are two key physical observables for MTI processing?
b) Doppler frequency and angle of arrival (AoA)
Besides AoA, another key physical observable for separating moving targets from noise is Doppler frequency.
(see page 30)
5. What are ramifications on adaptive processing due to variability in clutter terrain and other
interference nonstationaries?
c) They place practical limits on the size and quality of training data available
The number of adaptive degrees of freedom (DoFs) that can be utilized and supported in a given interference environment
is highly dependent on variability in clutter terrain and other interference nonstationaries.
(see page 41)
6. What mathematical form does 'colored' noise take?
b) A nondiagonal covariance matrix
Spacetime clutter is generally colored noise, that is, a nondiagonal covariance matrix.
(see page 53)
7.
What is "the iceberg effect" (see chart at right)?
b) Increase in interference rank with increasing CNR due to realistic physical limitations
The iceberg effect describes the increase in interference rank (eigenvalues above noise floor) with increasing
CNR when realistic eigenspectra are considered.
(see page 109)
8. What is another name for a structuredcovariance method of STAP?
d) Modelbased method
Structuredcovariance methods, also referred to sometimes as modelbased methods, refer to techniques that explicitly
incorporate specific mathematical constraints or structures into the covariance estimation process.
(see page 153)
9. For which case is the max SINR (signaltointerferenceplusnoiseratio) beamformer statistically
optimal?
a) Additive Gaussian interference
For the additive Gaussian interference case, the max SINR beamformer can be shown to be statistically optimal.
(see page 173)
10. What is a major advantage to radar clutter returns of having a prediction horizon on the
order of only seconds?
a) A significant degree of determination, and thus predictability
There is a significant degree of determination  and thus predictability  to radar clutter returns, particularly
if the prediction horizon is only on the order of seconds.
(see page 253)
