•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

Job Board

About RF Cafe™

Sitemap

>10,000 Unique Pages!

RF Cafe Software

RF Cascade Worbook
 RF Cascade Workbook 2005 - RF Cafe
Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger
BSEE
KB3UON
EIEIO

Carpe Diem!
(Seize the Day!)

5th MOB:
My USAF radar shop

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse riding website

  Nano Materials International (NMIC) Press Release - August 22, 2011

NMIC Introduces Industry’s First Aluminum Diamond
Heat Spreader Material for GaN Devices

-  Exceptional thermal conductivity can reduce device junction temperatures by 25%

Nano Materials International Corp. (NMIC) logo

TUCSON, AZ (August 22, 2011) -- Nano Materials International Corp. (NMIC) today introduced the first commercial device-level solution for dissipating the heat generated by high-density semiconductor devices such as gallium nitride (GaN) RF power transistors. When used as a heat spreader integrated with a device, NMIC’s new aluminum diamond metal matrix composites (MMCs), have demonstrated their ability to reduce device junction temperatures by up to 25%, allowing the devices to generate their full power output at their highest efficiency and potentially extend their operating life. NMIC’s aluminum diamond MMC material is the first aluminum diamond MMC material to be economically viable in high volume at a cost that adds minimally to each GaN device.

GaN is the latest advancement in compound semiconductor technology for use in generating high levels of RF power over broad frequency ranges well into the millimeter-wave range. GaN devices have much higher power density than other technologies such as gallium arsenide (GaAs), silicon, and silicon germanium (SiGe) as measured by the amount of power they can generate in given amount of device gate periphery. However, this power density also results in the production of large amounts of waste heat that must be removed from the device, a challenge that must be effectively met if GaN technology is to achieve its full potential. NMIC Introduces Industry’s First Aluminum Diamond Heat Spreader Material for GaN Devices

Diamond has the highest thermal conductivity of any substance on Earth. When made as an aluminum-diamond composite and used as a heat spreader material, this property remains about 80% higher than its nearest competitor, copper-molybdenum-copper, which is widely used for this purpose. Aluminum diamond also has a coefficient of thermal expansion (CTE) close to that of silicon carbide (SiC), which is essential as most GaN devices employ SiC as their substrate material. NMIC’s aluminum diamond also has metallization properties well suited for die attach, along with excellent dimensional tolerance and material stability.

NMIC’s MMC material with nickel-gold electrolytic or electroless plating is available in thicknesses, shapes, and sizes required by GaN transistors or Microwave Monolithic Integrated Circuits (MMICs). It can be supplied as MMC material alone or incorporated within a package in order to serve the needs of device manufacturers and package suppliers.

Readers are encouraged to learn more by visiting www.nanomaterials-intl.com or by calling (520) 574-1980.

About NMIC

Nano Materials International Corp, headquartered in Tucson, AZ was in 2005. It is dedicated to the development and commercialization of products based on transparent ceramics (Spinel) for transparent ballistic protection and other applications, and aluminum diamond metal matrix composites (MMCs) that offer the best properties for removing the heat generated by microwave power transistors and laser diodes. The company operates in a 42,000 sq. ft. facility that incorporates production, scale-up, application development, and technical support.












Posted  8/23/2011

SEARCH More Than 10,000 Pages Indexed on RF Cafe

Copyright 1996 - 2016
Webmaster:  Kirt Blattenberger, BSEE - KB3UON
Family Websites:  Airplanes and Rockets | Equine Kingdom

All trademarks, copyrights, patents, and other rights of ownership to images
and text used on the RF Cafe website are hereby acknowledged.