RF Cafe Software

RF Cascade Worbook
 RF Cascade Workbook 2005 - RF Cafe
Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio
Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Manufacturers & Services Consultants Engineer Jobs Twitter LinkedIn Advertise on RF Cafe! Engineering Books Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar Day in History RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Bookstore Calculators Education Engineering Organizations Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings Advertisers Websites RF Cafe Archives Test Notes Slide Rules RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger
BSEE
KB3UON
EIEIO

Carpe Diem!
(Seize the Day!)

5th MOB:
My USAF radar shop

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse riding website

A Question About Transmission Line Impedances

Sample Smith Charts for S-parametersRF Cafe visitor L. Joseph wrote to request that the following question be posted in hope that someone will provide an answer. If you care to reply, please either e-mail your answer to me so I can post it, or maybe reply on LinkedIn.

See answers below:


"This is the question I am trying to get an answer for:

Let us take a 100 ohm termination in a 50 ohm system and add a 50 ohm transmission line of 0.2 lambda (0.2λ) length.  

At the end of this 0.2 lambda line I will get an impedance corresponding to some VSWR1.

Then, I change the termination from 100 ohms to 75 ohms and at the end of the 0.2 lambda line VSWR2 will be
VSWR2 = VSWR1 / (100 / 75) = VSWR1 / 1.33

Will the same rule apply if the 0.2 lambda line impedance is not 50 ohms... say 25 ohms?

Is there an easy way to make calculations in situations like this?"



Thanks to the folks who took the time to provide an answer

VSWR Equations by Greg F. - RF CafeGreg F.
September 4, 2013

Dear L. Joseph and RF Café readers,

 

In regards to your Transmission Line Impedance question. The length of the transmission line can be largely ignored here. A theoretical lossless transmission line will only rotate the terminating impedance around on the same VSWR circle. You would only need to take the transmission line length into account if it were long enough for its attenuation characteristics to become significant.

The direct answer to your question is yes, for (your) two termination impedances the VSWR ratio will always be 1.33 regardless of the transmission line impedance. As long as the transmission line impedance stays lower than your lowest termination impedance.

I used Mathcad for the equations, but you should be able to make spread sheet calculation to do the job. You’ll find it interesting to play with the line impedance. It will cause the VSWR ratio to change when it is between the two termination impedances.


VSWR Equations & Plot by Greg F. - RF CafeAdded on September 5, 2013

I hope my solution helped, it was a fun distractions from work. I continued to play with it after I sent my email. I found it very interesting that the VSWR ratio became dynamic when the Line Impedance was between the two Termination Impedance. As you know, for all practical purposes, transmission line impedance is fixed so I’ve never spent any time exploring the effect of varying that parameter. I decided to plot the VSWR Ration as a function of Line Impedance. You can post this as well if you think it will be of interest.





L. Joseph responds:
September 5, 2013

"Thanks for the detailed answer!"





Posted  September 3, 2013
 

Try Using SEARCH to Find What You Need.  >10,000 Pages Indexed on RF Cafe !

Copyright 1996 - 2016
Webmaster:  Kirt Blattenberger, BSEE - KB3UON
Family Websites:  Airplanes and Rockets | Equine Kingdom

All trademarks, copyrights, patents, and other rights of ownership to images
and text used on the RF Cafe website are hereby acknowledged.