Custom Search
Over 10000 Pages Indexed
Your Host
Click here to read about RF CafeKirt
Blattenberger

... single-
handedly
redefining
what an
engineering website
should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5CCG (5th MOB):
My USAF radar shop

Hobby & Fun

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse
riding business website -
lots of info

•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

Job Board

About RF Cafe©

RF Cafe E-Mail

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT - RF Cafe Forums

Because of the high maintenance needed to monitor and filter spammers from the RF Cafe Forums, I decided that it would be best to just archive the pages to make all the good information posted in the past available for review. It is unfortunate that the scumbags of the world ruin an otherwise useful venue for people wanting to exchanged useful ideas and views. It seems that the more formal social media like Facebook pretty much dominate this kind of venue anymore anyway, so if you would like to post something on RF Cafe's Facebook page, please do.

Below are all of the forum threads, including all the responses to the original posts.


 Post subject: NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT
Posted: Sun Apr 18, 2010 8:43 am 
 
Lieutenant

Joined: Sun Apr 18, 2010 4:30 am
Posts: 1
NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT


Introduction

This type of non-destructive method NDT provides the possibility to measure residual stress and the effect of the service load with an impact device and a vibration measurement sensor.Internal stresses are to be considered as the following: 1) Operational strains referring to loads that the material is subject and calculated 2) Residual stresses in the material caused by heat treatments or stresses caused by welding, forging, casting, etc. The new technique is able to measure the applied load and residual stress that are balanced on the surface of the material, and in a relatively large volume, at times even the same size as the entire structures. This stress is part of the metal’s elasticity field and has a three axis spatial orientation. The system works through the accelerometer mounted with a magnetic base to generate the acceleration value of the vibrations created by the device impacting on the metal surface. The acceleration value, in combination with other parameters, permits obtaining the exact value of the residual stress or load applied in the desired point. This value will appear on the display directly in N / mm ². For non-magnetic metals, wax or gel will be used to mount the accelerometer.
This new system, for buildings, bridges steel inspection is very simple for to use , portable ,measure exact values of residual stress due to welding and the applied loads. After many years of research and tests, and between e discover about elastics behavior in field of metal steel now is very practice inspection point to point building and bridge constructions. This new system, for buildings, bridges steel inspection is very simple for to use , portable ,measure exact values of residual stress due to welding and the applied loads.
Internal stresses are to be considered as the following: 1) Operational strains referring to loads that the material is subject and calculated 2) Residual stresses in the material caused by heat treatments or stresses caused by welding, forging, casting, etc. The new technique is able to measure the applied load and residual stress that are balanced on the surface of the material, and in a relatively large volume, at times even the same size as the entire structures. This stress is part of the metal’s elasticity field and has a three axis spatial orientation.




Description

Elastic oscillations (also called vibrations) of an elastic material consisting of elementary masses alternately moving around their respective balance positions; these movements cause a transformation of the potential energy into kinetic energy. This phenomenon takes place due to reactions (elastic forces) that the aforementioned masses produce in opposition to elastic movements; these reactions are proportional according to Hooke’s Law to the same movements. The elastic waves that are produced propagate according to a fixed speed that depends on how rapidly the elemental masses begin to oscillate.
Elastic waves of this type are called “permanently progressive”, and they propagate at a constant speed which is absolutely independent of the speed with which the elemental masses move during the oscillating motion, and therefore also their respective oscillations. It is easy to verify that the elastic oscillations, from a material point P (in which the elemental mass m is supposedly concentrated) are harmonic. In reality, due to the fact that in any moment the elastic force that is applied to P is proportional to the distance x of the point from its position of balance 0, P acceleration (caused by the proportionality between the forces and the corresponding accelerations) is also proportional to x; this is demonstrated in the harmonic movement. The impulse creates in the metallic mass a harmonic oscillation (vibration) which is characterized by a specific frequency f and by a width equal to dx (movement of the relative mass). If a constant impulse is produced in the metallic material, the elastic oscillation generated in the P point will also produce a sinusoidal wave with specific width, acceleration, speed and period values. This wave is longitudinal when the direction of the vibration is equal to the P point movement, or is transversal, and in both cases the values of the results are identical; the only difference is the ¼ delay of the phase.

Analyze impact energies

Impact with the metallic surface results an elastic deformation energy.

Ed = Ei – ( Ek + Ep )

Ei = Impact energy Ek = Kinetic energy

Ed = elastic deformation energy Ep = plastic deformation energy + lost energy

Ed = ½ K dx² = ½ m ω² dx² K = constant elastic material (stiffness)




Conclusion

Application of this type of non-destructive method NDT provides the possibility to measure residual stress and the effect of the service load in a very rapid and simple way on any point of the metallic surface. The testing method requires smooth surfaces free of oxides, paint, lubricants and oil. Precision depends on the roughness of the surface.
This technology has demonstrated its validity over years of mechanical experimentation and has confirmed its theoretical basis.


About residual stresses

The residual stress in a metal doesn’t depend on its hardness, but from the elasticity module or Young module and from its chemical composition. The hardness of a metal indicates its ability to absorb elastic or plastic energy, but through it not possible to determine the value of residual stress. In a metal with the same hardness we will have different values of this stress. The residual stresses tend to equilibrate themselves in the surface of the material. The measurement made with all the major methods, X-ray, string gauge (destructive), optical etc. the residual stress is determined between the measuring the displacement of the equilibrium point the reticule crystalline. The method discovered analyzes the value of frequency and vibratory acceleration generated by an impulse with the subsequent reaction elastic (elastic field) from the metal.

You will realize the convenience of this technique.
1) Portable system easy to use and very swift.
2) NDT non-destructive test.
3) Repeatable in unlimited number of points.
4) All metals type (a-magnetic) and surface and inclination.
5) Don’t expensive. Effective for welding, hardened treatments, vessels control,
bridges, pipes line, aeronautics, NDT inspection for every metal types.

p.i Ennio Curto.


more info: www.scribd.com/doc/6067883/New-Techniqu ... ement-NDT-






Posted  11/12/2012
A Disruptive Web Presence

Custom Search
Over 10,000 pages indexed! (none duped or pirated)

Read About RF Cafe
Webmaster: Kirt Blattenberger
    KB3UON

RF Cafe Software

RF Cascade Workbook
RF Cascade Workbook is a very extensive system cascaded component Excel workbook that includes the standard Gain, NF, IP2, IP3, Psat calculations, input & output VSWR, noise BW, min/max tolerance, DC power cauculations, graphing of all RF parameters, and has a graphical block diagram tool. An extensive User's Guide is also included. - Only $35.
RF system analysis including
frequency conversion & filters

RF & EE Symbols Word
RF Stencils for Visio

Product & Service Directory
Personally Selected Manufacturers
RF Cafe T-Shirts & Mugs

RF Cafe Software

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel