Formulas & Data:
- Electronics
- Mathematics
- Physics
- RF & Microwaves

Parts Vendors:
- all hand-selected

- Amateur Radio
- Vintage Articles:
- Electronics World
- Popular Electronics
- Radio & TV News
- Radio Craft
- Short Wave Craft
- Wireless World

- Events Calendar
RF Cafe Homepage
Copyright 1999-2015   •−•  ••−•    −•−•  •−  ••−•  •   "RF Cafe" in Morse Code  >> Listen to It <<
- EW & Radar Handbook
- Quizzes       - Software
- App Notes
- Calculators
- Advertise on RF Cafe
- About RF Cafe™
- RF Cafe Shirts & Mugs
- RF Cafe Archives
RF Cafe Book Contest
- RF Cafe on Visit RF Cafe on Facebook Visit RF Cafe on Twitter Visit RF Cafe on LinkedIn
- Tech Humor
- Forums Archive
- Job Board
- Donate to RF Cafe
- Kirt's Cogitations
Custom Search
More than 10,000 searchable pages indexed.
Greetings: There is so much good stuff on RF Cafe that there is no way to list or link to all of it here. Please use the Search box or the Site Map to find what you want - there is a good chance I have it here. Thanks!

Estimating EMI in Wiring Harnesses - RF Cafe Forums

Because of the high maintenance needed to monitor and filter spammers from the RF Cafe Forums, I decided that it would be best to just archive the pages to make all the good information posted in the past available for review. It is unfortunate that the scumbags of the world ruin an otherwise useful venue for people wanting to exchanged useful ideas and views. It seems that the more formal social media like Facebook pretty much dominate this kind of venue anymore anyway, so if you would like to post something on RF Cafe's Facebook page, please do.

Below are all of the forum threads, including all the responses to the original posts.

 Post subject: Estimating EMI in Wiring Harnesses
Posted: Thu Jan 26, 2006 6:08 pm 
Information is needed to finalize a cable assembly design.

The current design consists of a coil cord and two stainless steel connectors. The EMI shielding consists of Sn/Fe/Cu mesh tape wrapped around the wire bundle with a 50% overlap and terminated to each connector with a stainless steel clamp. Uncoiled length of cable is about 2 meters. Normal braiding is not possible due to the need for coiling.

This cable needs to provide at least 40dB attenuation to a 400MHz test frequency.

Also needs to meet MIL-STD-461: CE, CS, RE, and RS at values ranging from 10KHz to 18GHz.

It is acceptable to qualify by design. This avoids the need to do expensive swept frequency tests and expedites the whole process.

Normally a shielded cable can qualify by design if measurements with a micro-ohmmeter show a very low resistance from shell-to-shell and across the faying surfaces at each end.

The requirements for this cable are <2.5 milliohms from each shell to the overall shield on the other side of the clamp. The cable design meets this limit.

Shell-to-shell values are a problem. Actual measurements with a micro-ohmmeter give a value between 1.25 and 1.35 ohms shell-to-shell. Braided cable would typically have a value in the milliohm range depending on weight of shield per meter and overall length. Because of this difference it may not be possible to qualify by design based on provable milliohm measurements.

My questions are:
01 Is the 1.25 to 1.35 ohm range too high for mesh tape? If so why, and how can we get to a milliohm range?
02 If a milliohm range is not necessary to use DC resistance tests as proof of compliance then what data is available to support such a position?
03 Would aluminized mylar foil help?

EMI testing hasn't been required at our level of manufacture for many years. Usually the odd job that requires it goes to an outsource test vendor but time constraints favor a faster solution.

Any help is greatly appreciated.

 Post subject:
Posted: Mon Jan 30, 2006 8:57 am 
Site Admin
User avatar

Joined: Sun Aug 03, 2003 2:02 pm
Posts: 476
Location: Erie, PA
Greetings TXH1138:

The >1 ohm value does sound high for an uncoiled (assumed straight?) length of just about any metal regardless of composition. Does your resistance measurement vary as the coil is extended and retracted, or if it is twisted in an extreme way?

I would suspect the contacts between the braid and the SS connectors. Can you access braid before the shells to verify that the actual braid resistance is in the <1 ohm range?

Does the resistance increase over time, indicating a corrosive barrier forming as with an anodization due to dissimilar metal contacts? In fact, if you reverse the leads on your micro ohmmeter, does the resistance value change? You be experiencing a galvanic current that is causing your meter to read erroneously high.

Well, that's my 2¢ worth.

- Kirt Blattenberger :smt024
RF Cafe Progenitor & Webmaster

 Post subject: Estimating EMI in Wiring Harnesses
Posted: Tue Jan 31, 2006 2:25 pm 
Thanks Kirt!

I'll try that with the micro-ohmmeter.

Measurements of the mesh tape show much variance when flexed. The mesh to shell faying surfaces are rock solid. That's the only good news.

It's not the end of the project if we can't qualify with milliohm measurements. It's just that now there's a need to do compliance testing for conducted and radiated emissions at the cable level.

Such testing was more common up to the early 1990's. Personal experiece showed that, after the qual test phase, it was always a waste of time and money to run EMI on a cable. They always passed. Better to test the whole system then make tweaks during LRIP. Manufacturing processes are so much better these days and understanding of shielding, bonding, and grounding too.

Only thing left is to establish the protocol and qual the design.

Posted  11/12/2012

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger… single-handedly redefining what an engineering website should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5th MOB: My USAF radar shop

Airplanes and Rockets: My personal hobby website

Equine Kingdom: My daughter Sally's horse riding website