Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Calculators Education Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings RF Cafe Archives Test Notes Wireless System Designer RF Stencils for Visio Shapes for Word Search RF Cafe Sitemap Advertising Facebook RF Cafe Forums Thank you for visiting RF Cafe!

Winding Ratio in IF Transformer - RF Cafe Forums

The original RF Cafe Forums were shut down in late 2012 due to maintenance issues. Original posts:

Amateur Radio | Antennas | Circuits & Components | Systems | Test & Measurement


Charl
Post subject: Winding ratio in IF transformer Posted: Sun Aug 05, 2007 3:42 pm

Colonel


Joined: Fri May 19, 2006 5:01 am
Posts: 25
Location: Netherlands
Hello everybody,

In building a radio, I am wondering: why do all IF transformers I see have a near 1:1 winding ratio? This goes for both single-tuned and doubled-tuned transformers. Couldn't they get more gain by using say a 1:2 ratio? I could only see one objection: more windings -> more self-capacitance -> self-resonance may get too near operating frequency. Why don't they use more secondary windings?

Thanks in advance,
Charl


Top

IR
Post subject: Posted: Mon Aug 06, 2007 1:35 pm

Site Admin


Joined: Mon Jun 27, 2005 2:02 pm
Posts: 373
Location: Germany
Hello Charl,

I guess that the reasons for that could be:

1. Maintaing the same impedance along the IF chain.
2. 1:1 Transformers have the widest BW available.


Top

Charl
Post subject: Posted: Mon Aug 06, 2007 2:12 pm

Colonel


Joined: Fri May 19, 2006 5:01 am
Posts: 25
Location: Netherlands
Hello IR,

Thanks for your reply. I really want to make sure I understand this, so I hope you don't mind this follow-up.

1) How can you talk of impedance when either side of the transformer is an LC tank?
2) What is the reason for this? (if this is textbook material, please refer me to a good textbook :) )

Kind regards,
Charl


Top

IR
Post subject: Posted: Mon Aug 06, 2007 4:13 pm

Site Admin


Joined: Mon Jun 27, 2005 2:02 pm
Posts: 373
Location: Germany
Hello Charl,

Transformers are located not only between resonance tanks but also between filters and amplifiers to maintain the charactieristic impedance (1:1) or to perform impedance transformation.

There are very good application notes in RF Cafe elaborating about transformers design.

In general, if you increase the number of turns or the frequency of operation in transformer you reduce the flux. Therfore, reducing the number of turns will give you a wider BW.


Top

nubbage
Post subject: Posted: Tue Aug 07, 2007 3:20 am

General


Joined: Fri Feb 17, 2006 12:07 pm
Posts: 218
Location: London UK
Hi Charl et al
A good exposition on resonant single and coupled circuits, ie tuned transformers, is given in Terman "Radio Engineering" Chapter 3.
If 2 windings are resonant and the number of turns is in a reasoanable ratio, say 3 to 1, then the Q is approx the same. The dynamic impedance of each side at resoance is 2*pi*f*L*Q
If Q is roughly equal on each side, then the impedance ratio is the same as the inductance ratio, which is the square of the turns ratio. This simplistic argument does not take account of coupling coefficient, but this is fully shown in the Terman textbook. If therefore the number of turns on the secondary is increased, the load impedance will have to be very high for maximum power transfer. Whilst the resistive part of many solid state device impedances is high (IGFETs for example) the capacitive reactance is very low at high frequencies. Thus the resonant secondary will be dominated by high and temperature variable capacitance of the following stage input load.


Top

nqureshi
Post subject: Impedance of parallel RLC circuitPosted: Tue Jan 13, 2009 3:14 pm

Lieutenant

Joined: Tue Jan 13, 2009 3:06 pm
Posts: 1
can you tell me how to calculate impedance of parallel RLC circuit? if I have a L=1.2uH, C=72p, R=1.2k in parallel what will be the Impedance?[/quote]

_________________
RF circuit Design







Posted  11/12/2012

RF Cafe Software

   Wireless System Designer - RF Cafe
Wireless System Designer

RF & EE Symbols Word
RF Stencils for Visio
Calculator Workbook
RF Workbench
Smith Chartâ„¢ for Visio
Smith Chartâ„¢ for Excel

About RF Cafe

Kirt Blattenberger - RF Cafe WebmasterCopyright
1996 - 2022
Webmaster:
Kirt Blattenberger,
 BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:
 AirplanesAndRockets.com

Try Using SEARCH
to Find What You Need. 
There are 1,000s of Pages Indexed on RF Cafe !

height-line