Homepage - RF Cafe
Webmaster: Kirt Blattenberger | KB3UON | Sitemap | ©1996-2014     Visit RF Cafe on
      Menu below is just a small sample of what is here!          Visit RF Cafe on Facebook Visit RF Cafe on Twitter Visit RF Cafe on LinkedIn
Custom Search
More than 10,000 searchable pages indexed.
•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

RLC circuit - RF Cafe Forums

Because of the high maintenance needed to monitor and filter spammers from the RF Cafe Forums, I decided that it would be best to just archive the pages to make all the good information posted in the past available for review. It is unfortunate that the scumbags of the world ruin an otherwise useful venue for people wanting to exchanged useful ideas and views. It seems that the more formal social media like Facebook pretty much dominate this kind of venue anymore anyway, so if you would like to post something on RF Cafe's Facebook page, please do.

Below are all of the forum threads, including all the responses to the original posts.


adamzaman
Post subject: RLC circuit
Unread postPosted: Wed Mar 16, 2005 8:30 am

Ok, I am having a problem with a RLC circuit and my teacher was unable to offer a satisfactory explanation. Hope that you'll help.
Consider a DC battery, a switch, a resistor, a capacitor and an inductor in series. Before t=0 the switch is open and assume that the circuit has achieved steady state. This means that the capacitor voltage is 0 and so is the inductor current. At t=0 the switch is closed. It follows that at t=0+ (i.e. just after t=0) the capacitor voltage will be 0 and so will the inductor current. It also follows that the voltage across the inductor at t=0+ will be V, i.e. the voltage of the source (the capacitor is acting as short-circuit and the inductor as open circuit). Therefore the rate of change of current in the circuit at t=0+ will be some positive value (from v=L di/dt). But the rate at which the capacitor voltage is increasing is ZERO at t=0+ (from i=C dv/dt; i=0). How could the rate of increase of current in the inductor be non-zero, but the rate of increase of voltage in the capacitor be zero? If one is increasing, shouldn't the other as well?
Please explain in physical terms and not mathematical. I'll be highly grateful.


Top


Guest
Post subject:
Unread postPosted: Wed Mar 16, 2005 5:28 pm

"Therefore the rate of change of current in the circuit at t=0+ will be some positive value (from v=L di/dt). But the rate at which the capacitor voltage is increasing is ZERO at t=0+ (from i=C dv/dt; i=0)."

How do you get this statement? There is current charging the capacitor the moment the switch is flipped. It is limited by R but it is not 0.







Posted  11/12/2012
A Disruptive Web Presence

Custom Search
Over 10,000 pages indexed! (none duped or pirated)

Read About RF Cafe
Webmaster: Kirt Blattenberger
    KB3UON

RF Cafe Software

RF Cascade Workbook
RF Cascade Workbook is a very extensive system cascaded component Excel workbook that includes the standard Gain, NF, IP2, IP3, Psat calculations, input & output VSWR, noise BW, min/max tolerance, DC power cauculations, graphing of all RF parameters, and has a graphical block diagram tool. An extensive User's Guide is also included. - Only $35.
RF system analysis including
frequency conversion & filters

RF & EE Symbols Word
RF Stencils for Visio

Product & Service Directory
Personally Selected Manufacturers
RF Cafe T-Shirts & Mugs

RF Cafe Software

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
Your RF Cafe Progenitor & Webmaster
Click here to read about RF CafeKirt Blattenberger... single-handedly redefining what an
                                 engineering website should be.

View the YouTube RF Cafe Intro Video Carpe Diem! (Seize the Day!)

5CCG (5th MOB): My USAF radar shop

Airplanes and Rockets: My personal hobby website

Equine Kingdom: My daughter Sally's horse riding website