Thank you for visiting RF Cafe! Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Calculators Education Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings RF Cafe Archives Test Notes Wireless System Designer RF Stencils for Visio Shapes for Word Search RF Cafe Sitemap Advertising Facebook RF Cafe Forums RF Cafe Homepage Thank you for visiting RF Cafe!

RF Amplifier Maximum Ratings and Complex Waveforms - RF Cafe Forums

The original RF Cafe Forums were shut down in late 2012 due to maintenance issues. Original posts:

Amateur Radio | Antennas | Circuits & Components | Systems | Test & Measurement

Post subject: RF amplifier Maximum ratings and complex waveforms Posted: Tue Oct 07, 2008 10:45 pm


Joined: Tue Oct 07, 2008 10:19 pm
Posts: 1

Hi there,
I have a question on how to correctly rate the maximum peak power of a RF device, given its maximum drain (collector) voltage and maximum current and/or power dissipation. My question rises as more complex and demanding waveforms are being used in RF power amplifiers nowadays: higher peak-to-average ratios (PAR). More specifically I am looking for a guide on how to derive voltages and currents being developed at the devices terminals (not at the 50-Ohm impedance nodes) under a known set of conditions: Average power, PAR, VDD. Is it possible for someone to point me in the right direction on how to find this information?

Thank you



Post subject: Posted: Thu Oct 09, 2008 3:35 pm
Hello kalisteuma

It is very complex answer.. I don´t know if I can completely answer it..

When I design a power amplifier the first thing you have to analyze even before choosing any transistor is your input signal. It is not always that easy to know the PAR of the complex modulated signals, the best way is by measuring the CCDF curve of your signal (you can also simulate it). With the CCDF curve, you will have a record of the maximum peak power of the signal.
Then you select a transistor knowing the average power that you need and the peak power that your signal demands (of course that if your requirements allow it, you can chopp the output signal by reducing its PAR, selecting a smaller transistor). Let me clarify this with an example:

-If you have a signal with a PAR of 10dB and you need 10W of average power you will have to choose a 100W amplifier. In this case, the max peak power at the output will be 100W
-If you have a signal with a PAR of 10dB and you need 10W of average power and you choose a 50W amplifier. In this case, the max peak power at the output will be 50W and you will be chopping the signal to a PAR of 7dB.
-If you have a signal with a PAR of 5dB and you need 10W of average power and you choose a 100W amplifier. In this case, the max peak power at the output will be 31.6W and you will be using the amplifier with a lot of back off.

With the above information I was trying to explain how to rate the max output peak power of an amplifier.

Now if you want to know the peak voltage at the very output of the transistor you will need to know the impedance of that point. You can have that by measuring or asking to the manufacturer the loadpull data of the transistor.

Posted  11/12/2012

RF Cafe Software

   Wireless System Designer - RF Cafe
Wireless System Designer

RF & EE Symbols Word
RF Stencils for Visio
Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel

About RF Cafe

Kirt Blattenberger - RF Cafe WebmasterCopyright
1996 - 2022
Kirt Blattenberger,

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:

Try Using SEARCH
to Find What You Need. 
There are 1,000s of Pages Indexed on RF Cafe !