Because of the high maintenance needed to monitor and filter spammers from the RF Cafe Forums, I decided that it would
be best to just archive the pages to make all the good information posted in the past available for review. It is unfortunate
that the scumbags of the world ruin an otherwise useful venue for people wanting to exchanged useful ideas and views.
It seems that the more formal social media like Facebook pretty much dominate this kind of venue anymore anyway, so if
you would like to post something on
RF Cafe's
Facebook page, please do.
Below are all of the forum threads, including all
the responses to the original posts.
Antonio
Post subject: Microstrip Tapped Line filter Design Posted:
Fri Jun 29, 2007 5:31 am
Captain
Joined: Sat Jun
16, 2007 12:26 am
Posts: 12
Hi All,
Can you tell me how
to find out the tapped point and tapped length in a Edge coupled tapped
line filter design?
I am trying to design a band pass filter
using Edge coupled tapped line structure.
The inputs I have
are impedances, Er, substrate information. I am not able to find out
the way to calculate tapped point and tapped length using all these
inputs.
Is there any way to find out the tapped length and tapped
point using ADS tool? If it is then how?
Top
trobbio
Post subject: Posted: Sat Jan 03, 2009 1:39 pm
Lieutenant
Joined: Fri Jan 02, 2009 12:27 pm
Posts: 1
Search for an
IEEE article titled "Microstrip Tapped-Line Filter Design" by Joseph
S. Wong. That article gives the design procedure and all the math behind
selecting the tap point.
Top
nubbage
Post subject:
Posted: Tue Jan 06, 2009 12:09 pm
General
Joined:
Fri Feb 17, 2006 12:07 pm
Posts: 218
Location: London UK
If
you cannot locate that, a simple high-level approach is to set the internal
impedance level of the filter (say 200 ohms or whatever), which can
improve the design process. Then the tapping point is simply derived
from the ratio of internal and external (50 ohm) impedance, the end-line
characteristic Z, and the loaded Q of the input/output resonators. The
formula is
tap point = Len * ASIN(SQRT(PI*Zs/(4*Z0*Ql)))
where len is the length of the end resonator,
Zs is the internal
impedance (100 ohm, 200 ohm or whatever)
Z0 is the characteristic
impedance of the end resonator in its geometric environment
and
Ql is the loaded Q of the end resonator, derived from graphs.
The
process is described in the RSGB Microwave Handbook, a 3 volume set.
_________________
At bottom, life is all about
Sucking in
and blowing out.
Posted 11/12/2012