Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Calculators Education Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings RF Cafe Archives Test Notes Wireless System Designer RF Stencils for Visio Shapes for Word Search RF Cafe Sitemap Advertising Facebook RF Cafe Forums Thank you for visiting RF Cafe!

Inquiry of Noise Figure - RF Cafe Forums

The original RF Cafe Forums were shut down in late 2012 due to maintenance issues. Original posts:

Amateur Radio | Antennas | Circuits & Components | Systems | Test & Measurement

Post subject: Inquiry of noise figure
Unread postPosted: Sat Mar 12, 2005 10:36 am

Dear Friends,

I am trying to improve the noise figure my system.

There is like this.

a) Current BPF component : 5.15 ~ 5.825GHz (700MHz Bandwidth)
b) Will be changed BPF component : 5.725 ~ 5.825GHz (100MHz Bandwidth)

If I changed the a) to b), noise figure will be improved up to 5dB. Is that right? Assuming same input signal comes.

I appreciate any help or comment or feedback,

Many thanks



Kirt Blattenberger
Post subject: Here's a start
Unread postPosted: Sat Mar 12, 2005 6:38 pm
Site Admin
User avatar

Joined: Sun Aug 03, 2003 2:02 pm
Posts: 308
Location: Erie, PA
Greetings James:

Changing the filter bandwidth will not affect the noise figure calculation, only the insertion loss (gain) of the filter will. However, reducing the bandwidth by a factor of 7 as you propose will reduce the noise power by 10*log(7)=8.45 dB. That in turn will improve your signal-to-noise ratio by 8.45 dB, since the noise power is dependent on the system bandwidth. So, the minimum detectable signal will be 8.45 dB lower. That translates to a range increase factor of 10^(8.45/20)=2.65.

These calculations hold for ideal environment and assume no other factors in the system equation change. It also assumes that the relative bandwidth changes are the noise power bandwidths of the filters and not just the 3 dB bandwidths, and that the final bandwidth at the detector is set by your new filter. At 100 MHz, it likely is not.

The benefit you will most likely realize is a reduction in the out-of-channel interference both from direct signals and from intermodulation products created by those out-of-band signals that end up in-band.

For all the formulas you need to do the calculations yourself, please go to this page and click on the links of interest.

On this page is a simple online cascade calculator:
http://www.rfcafe.com/references/spread ... alc-ss.htm

Also, you can download RF Workbench (shareware by RF Cafe) that includes calculations for determining filter noise bandwidth:
http://www.rfcafe.com/business/software ... kbench.htm

- Kirt Blattenberger :smt024


Post subject:
Unread postPosted: Sat Mar 12, 2005 8:01 pm

Dear Kirt:
Thank for your careful answer regarding my question.
Let me confirm a few things as follows:

1. I think the sensitvity will be 8.45dB better if I change 5.15 ~ 5.825GHz (700MHz Bandwidth) to 5.725 ~ 5.825GHz (100MHz Bandwidth). Is that right? Is sensitivy related with system bandwidth?

2. Based upon your reply, could you explain more details regarding range increase means? Does it cover more distance?

So, the minimum detectable signal will be 8.45 dB lower. That translates to a range increase factor of 10^(8.45/20)=2.65.

Best Regards,


Kirt Blattenberger
Post subject:
Unread postPosted: Sat Mar 12, 2005 9:43 pm
Site Admin
User avatar

Joined: Sun Aug 03, 2003 2:02 pm
Posts: 308
Location: Erie, PA
Greetings James:

1. Your sensitivity will be improved if the changed BW represents the final BW that your detector or smapling system will see. That is, if somewhere down the receive chain, there is, say, a 50 kHz bandwith filter prior to detection, then having reduced the other filter from 700 MHz down to 100 MHz will have no measureable effect. As mentioned, the benefit you might experience would be a reduction of interfering signals that get translated inband. That still counts as a signal-to-noise improvement, but in a different way.

2. Signal strength in power falls off at a rate of 20 log(2) dB, which is approximately 6.02 dB for every doubling of the distance. So, every 6.02 dB of improved sensitivity theoretically results in being able to receive a signal twice as far away. I say theoretically because in the real world, multipath and fading due to barriers can make the change something other than 6.02 dB.

- Kirt Blattenberger :smt024

Posted  11/12/2012

RF Cafe Software

   Wireless System Designer - RF Cafe
Wireless System Designer

RF & EE Symbols Word
RF Stencils for Visio
Calculator Workbook
RF Workbench
Smith Chartâ„¢ for Visio
Smith Chartâ„¢ for Excel

About RF Cafe

Kirt Blattenberger - RF Cafe WebmasterCopyright
1996 - 2022
Kirt Blattenberger,

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:

Try Using SEARCH
to Find What You Need. 
There are 1,000s of Pages Indexed on RF Cafe !