
 

 

Tunable Constant Q Band-Pass Filter Design Using q and k Values 
 

 
 
This paper describes a method for designing a tunable, coupled-resonator band-pass filter using q and k 
values.  The method results in a filter that has a constant Q and a consistent filter characteristic as it is tuned 
from low to high frequency.  The q and k values are either calculated or are taken from published tables.  A 
symmetric design based on a N=2 low-pass prototype and using lossless components is assumed for this 
design example.  
 
 
 
 
 
 
 
 

Figure 1. Prototype filter. 
 

 
 
 
 
 

 
 
 

Figure 2. Realized filter with inductive or capacitive resonator coupling. 
 
 
RN = Nodal resistance 
CN = Nodal capacitance 
LN = Nodal inductance 
XC = Coupling reactance, either inductive (LC) or capacitive (CC). 
RS = RL = source and load resistance 
CS = shunt capacitance 
LS = shunt inductance 
CC = coupling capacitance 
LC = coupling inductance 
 
Given qN & kN: 
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Coupling structure and shunt elements:  
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To make the filter tunable, either the nodal C or nodal L (or both) must change.  From (6) it is seen that with 
capacitive coupling, CC varies with nodal capacitance CN.  From (8), the inductive coupling element, LC varies 
with nodal inductance LN.   

 

Conclusion: 
 

If it is desired to hold the coupling element constant while tuning a filter by varying CN , then 
inductive coupling would be the type to use.  Conversely, if the filter is tuned with variable 
inductance then capacitive coupling should be used. 

 
Notice that these are true only for a filter whose Q, QBP  is constant as the filter center frequency is tuned. 
 

But from (3) & (4): 𝑄𝑏𝑝 =
𝑅𝑁

𝜔0𝐿𝑁𝑞𝑁
 (10) 

 

 ∴ 𝑄𝑏𝑝 ∝ 1 𝜔0⁄  
  
In order to have the Q remain constant as the filter is tuned, then 𝑅𝑁 the numerator of (10) needs to vary 
linearly with frequency as the filter is tuned from 𝜔𝐿𝑂to 𝜔𝐻𝐼  .  This will give a filter with a non-changing 
transfer function and constant 𝑄𝑏𝑝 . 

 

From (4),  
𝑅𝑁

𝜔0
= 𝑄𝑏𝑝𝐿𝑁𝑞𝑁.  With 𝑄𝑏𝑝  held constant as 𝜔0 is increased, 𝑅𝑁 must increase proportionally. 

 
  



 

 

We want a matching network that converts a fixed resistance on one side to one that varies proportionally 
with frequency on the other. 
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Desired R of the matching network presented to the resonant nodes: 
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Any reactive component of the matching network will be absorbed by either the Ln or Cn. 
 
Consider this narrow band equivalency: 
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 (see Appendix) 

  
 
 
Using this network as the matching circuit changes Figure 2 as follows: 
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Figure 3. Filter with matching network and narrowband equivalent. 
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R1 will be the nodal resistance, RN and will increase somewhat non-linearly with frequency but can be made 
to match the desired value of R1 at the two frequency tuning extremes, 𝜔𝐿𝑂  and 𝜔𝐻𝐼 .   Between the two 
frequency extremes, R1 will have a positive error relative to the ideal value of RN.  A simulation of the 
network will show whether it has an unacceptable effect on the filter’s transfer function. It can be mitigated 
somewhat by reducing the frequency range for the calculation of the network. This will split the error 
between those frequencies above and below the calculated range, which will be negative, and the those 
between the calculated range, which will be positive. 
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Since 𝑅1 increases proportionally with frequency: 
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From (12) and (13), 𝑚𝑅1_𝐿𝑂 = 𝑅𝑎 +
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Equating: 
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L1 will vary some with frequency but it is normally such a large value that its effect on Ls is minimal.  To get 
realizable values the value of Ra will usually be increased.  This can be matched to 50 ohm using a 
transformer.  Normally one would design the filter to meet attenuation and passband requirements at the two 
tuning extremes, then using a spreadsheet loaded with appropriate equations, adjust the nodal inductance 
and perhaps filter Q to get an Ra that can be matched by a convenient transformer ratio and realizable 
component values. 
 
The design method shown for non-dissipative components can be extended to dissipative components and 
higher numbers of sections by using the corresponding q and k values associated with those components and 
sections. 
  



 

 

Example Design: Tunable Preselector 
 

 
Frequency tuning range: 118 – 152 MHz 
When tuned to 137 MHz we want the attenuation at 157 MHz to be at least 35 dB.  According to Zverev, a N=3 
Butterworth has a 3 dB to 35 dB bandwidth ratio of about 3.8. 
 

When tuned to 137 MHz, the bandwidth at the 35 dB point is 157 −
1372

157
≅ 37.5 𝑀𝐻𝑧.  The bandwidth at the 3 

dB point is 
37.5

3.8
= 8.9 𝑀𝐻𝑧.  The filter Q is then 

137

9.9
= 13.8. 

 
The filter: 
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Flo = 118 MHz 
Fhi = 152 MHz 
Filter, n=3 Butterworth 
q1 = qN = 1.0 
k12 = k34 = 0.7071 
 
LN and Q were manipulated to give realizable values and to give an RA value that was a transformable value 
from 50 ohms. 
 
Q = 16.0 
LN = 68 nH 
Lsa = Lsb = 75 nH 
La = 540 nH 
Ra  = 450 ohm (50 ohm with 9:1 transformer) 
LC = 1539 nH (filter topology will reduce this to LC/4) 
Csa = Csb 

Csa_118MHz  = 27 pF 
Csa_137MHz = 20 pF 
Csa_152MHz = 16 pF 
 
This final filter and its response is shown below: 
 



 

 

 
 

 

 



 

 

Appendix - Narrow-Band Approximations 
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